首页> 外文OA文献 >Impedance and AC conductivity study of nano crystalline, fine grained multiferroic bismuth ferrite (BiFeO3), synthesized by microwave sintering
【2h】

Impedance and AC conductivity study of nano crystalline, fine grained multiferroic bismuth ferrite (BiFeO3), synthesized by microwave sintering

机译:微波烧结合成纳米晶细晶粒多铁铋铁氧体(BiFeO3)的阻抗和交流电导率研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, major reduction in sintering time, temperautre and significant improvement over final density of sitnered sample is reported for the microwave sintered nanocrystalline BiFeO3 (BFO) ceramic. Also, different sintering time and temperatures have been used to tailor the grain size and the final density of the resulting BFO ceramics synthesized from phase pure BFO nanoparticles ((d) over bar approximate to 10 nm). Microwave sintering resulted in reducing the sintering time substantially (by 1h), and has resulted in submicron sized grains and high resistivity similar to 1.8 G Omega-cm. The AC conductivity is seen to follow the Jonscher's power law behavior, suggesting correlated barrier hopping (CBH) mechanism in the sample. The role of oxygen vacancies at high temperature, due to volatility of bismuth, in dielectric and conductivity behavior is also discussed. Further, the sample displayed dielectric anomaly near magnetic transition temperature (similar to 180 degrees C) indicating bearing of magnetic moments on the dielectric properties. Using Impedance Spectroscopy (IS) we have established, the electrical heterogeneity of the ceramic BFO reavealing semiconducting nature of grains and insulating nature of grain boundary. This, formation of network of insulating grain boundaries and semiconducting grains could lead to formation of internal barrier layer capacitance (IBLC) leading to high dielectric constant in microwave sintered BFO. (C) 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.
机译:本文报道了微波烧结纳米晶BiFeO3(BFO)陶瓷的烧结时间,温度降低和显着改善的最终样品密度。同样,已使用不同的烧结时间和温度来调整由相纯BFO纳米粒子合成的所得BFO陶瓷的晶粒尺寸和最终密度((d)在大约10 nm的条上)。微波烧结大大缩短了烧结时间(减少了1小时),并导致了亚微米级晶粒和高电阻率,类似于1.8 GΩ-cm。可以看出,AC电导率遵循Jonscher的幂定律行为,表明样品中存在相关的势垒跳跃(CBH)机制。还讨论了由于铋的挥发性,高温下氧空位在介电和电导行为中的作用。此外,样品显示出接近磁转变温度(类似于180摄氏度)的介电异常,表明磁矩对介电性能的影响。我们使用阻抗谱(IS)建立了陶瓷BFO重排的电异质性,从而消除了晶粒的半导体性质和晶界的绝缘性质。这样,形成绝缘晶界和半导体晶粒的网络可能导致内部势垒层电容(IBLC)的形成,从而导致微波烧结BFO中的高介电常数。 (C)2015年作者。除另有说明外,所有文章内容均根据知识共享署名3.0未移植许可证进行许可。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号